Rice Straw Carbonizer: Potential Technology for Carbonized Rice Straw Production
PDF

Keywords

Air Velocity
Open Burning
Moisture Content
Fuel Gas Analysis
Biomass
Pyrolysis

Abstract

Rice straw, the vegetative remnants of the rice plant, often discarded after harvest, faces issues when subjected to open burning, including loss of soil nutrients, moisture, pollution, and threats to nearby structures. The method of charcoal making involves biomass pyrolysis to produce biochar, effectively removing CO2 from the atmosphere. This study aimed to optimize biochar production using a locally designed rice straw carbonizer, accommodating 10 kg of material. Two moisture content samples, 8.90% and 11.70%, were examined for the carbonizer's performance, evaluating operation time, biochar yield, output capacity, air velocity, gas emissions, temperature, and cost. Findings revealed a biochar yield of 21.89% and an output capacity of 13.87 kg/hr for 8.90% moisture content, and 19.11% yield with 9.41 kg/hr output for 11.70% moisture content. The average operation time was 73.33 and 109.44 minutes for 8.90% and 11.70% moisture content, respectively, with a maximum temperature of 733.80°C. Air velocity averaged 0.70 m/s and 0.52 m/s for the two moisture levels. Flue gas analysis indicated the influence of moisture content on gas composition, with smaller valve openings leading to higher values. Cost analysis suggested a potential reduction in biochar production costs from PhP 12.60 to PhP 6.34 per kg by increasing processed rice straw from 5 to 12 tons annually. At a custom rate of PhP 8.00 per kg, processing 12 tons per year could yield approximately 2,672 kg of biochar. This research offers insights into enhancing biochar production efficiency and cost-effectiveness through moisture content adjustments and increased processing scale.

PDF

References

ANDO, K., N. ISHIBASHI, G. GUSTAN PARI, AND K. MIYAKUNI. (2004). Replications on Some of Charcoal Production Methods for Carbon Sequestration in Indonesia. Retrieved on April 10, 2012.

BELONIO, A. T. (2005). Rice Husk Gas Stove Handbook. Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City, Philippines.

BIARNES, M., J. ESTEVES, AND B. FREED. (2018). E-Instrument International. Combustion Booklet. Copyright @ 2018 EII. Middletown Blvd., Langhorne PA 19047.

BRIDLE, T., I. HAMMERTON, AND C. HERTLE. (1990). Control of Heavy-Metals and Organochlorines Using the Oil from Sludge Process. Water Sci. Technol., 22(12), 249–258.

BROCKSIEPE, H. G. (1986). Charcoal. Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., pp. 157-162. VCH Publishers, New York, NY.

DOYLE, P. T., C. DEVENDRA, AND G. R. PEARCE. (1986). Rice Straw as a Feed for Ruminants. International Development Program of Australian Universities and Colleges.

EMRICH, WALTER. (1985). Handbook of Charcoal Making: A Traditional and Industrial Method. Series E, Volume 7, Energy from Biomass. Solar Energy R & D in the European Community.

ENDERS, A., K. HANLEY, T. WHITMAN, S. JOSEPH, AND J. LEHMANN. Characterization of Carbonized rice straws to Evaluate Recalcitrance and Agronomic Performance, Bioresource. Technol., 114, 644–653, 2012. DOI: 10.1016/j.biortech.2012.03.022

ERGUN, S. (1952). Fluid Flow Through Packed Columns, Chem. Eng. Prog., 48, 89–94.

FOOD AND AGRICULTURE ORGANIZATION (FAO). (1987). Simple Technologies for Charcoal Making. Retrieved on October 3, 2009, from http://www.fao.org/docrep/X5328e/x5328e00.HTM

FRIDLEY, J. L., J. E. JORGENSEN, AND J. S. LAMANCUSA. (1997). Benchmarking: A Process Basis for Teaching Design. ASEE/IEEE Frontiers in Education Conference Proceedings. Retrieved on September 8, 2009. DOI: 10.1109/FIE.1997.635769

GADDE, B., S. BONNET, C. MENKE, AND S. GARIVAIT. (2009). Air Pollutant Emissions from Rice Straw Open Field Burning In India, Thailand, and the Philippines. Environ. Pollut. 157: 1554–1558. DOI: 10.1016/j.envpol.2008.11.026

GASKIN, J. W., C. STEINER, K. C. HARRIS, C. DAS, AND B. BIBENS. (2008). Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use, Transactions of the ASABE, 51, 2061–2069.

GUO, J., AND B. CHEN. (2014). Insights on the Molecular Mechanism for the Recalcitrance of Biochar: Interactive Effects of Carbon and Silicon Components. Environ. Sci. Technol., 48, 9103–9101. DOI: 10.1021/es501346x

HAYS, M. D., P. M. FINE, C. D. GERON, M. J. KLEEMAN, AND B. K. GULLETT. (2005). Open Burning of Agricultural Biomass: Physical and Chemical Properties of Particle-Phase Emissions. Atmos. Environ., 39, 6747–6764. DOI: 10.1016/j.atmosenv.2005.08.069

HOSSAIN, A. M. M. M., AND K. PARK. (2012). Exploiting Potentials from Interdisciplinary Perspectives with Reference to Global Atmosphere and Biomass Burning Management. Aerosol Air Qual. Res., 12, 123–132. DOI: 10.4209/aaqr.2011.09.0135

HUNT, D. R. (2001). Farm Power and Machinery Management. 10th ed. Ames, Iowa: Iowa State University Press.

KADAM, K. L., L. H. FORREST, W. A. JACOBSON. (2000). Rice Straw as a Lignocellulosic Resource: Collection, Processing, Transportation, and Environmental Aspects.

KALDERIS, D., M. S. KOTTI, A. MÉNDEZ, AND G. GASCÓ. (2014). Characterization of Hydrochars Produced by Hydrothermal Carbonization of Rice Husk. Solid Earth, 5, 477–483. DOI: 10.5194/se-5-477-2014

KEPNER, R. A., R. BAINER, AND E. L. BARGER. (1978). Principles of Farm Machinery. 3rd edition. AVI Publishing Company, Inc. Westport: Connecticut. USA.

LEHMANN, J., M. C. RILLIG, J. THIES, C. A. MASIELLO, W. C. HOCKADAY, AND D. CROWLEY. (2011). Biochar Effects on Soil Biota – A Review. Soil Biol. Biochem., 43, 1812–1836. DOI: 10.1016/j.soilbio.2011.04.022

LIU, Z., AND F. S. ZHANG. (2009). Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass. J. Hazard. Mater., 167, 933–939. DOI: 10.1016/j.jhazmat.2009.01.085

LYNCH, J., S. JOSEPH. (2010). Guidelines for the Development and Testing of Pyrolysis Plants to Produce Biochar. International Biochar Initiative. Document Version Information: Ver. 1.1, 7 June 2010.

MUKHERJEE, A., AND A. ZIMMERMAN. (2013). Organic Carbon and Nutrient Release from a Range of Laboratory-Produced Biochars and Biochar-Soil Mixtures. Geoderma, 193, 122–130. DOI: 10.1016/j.geoderma.2012.10.005

MUKOME, F. N. D., X. ZHANG, L. C. R. SILVA, J. SIX, AND S. J. PARIKH. (2013). Use of Chemical and Physical Characteristics to Investigate Trends in Biochar Feedstocks. J. Agric. Food Chem., 61, 2196–2204. DOI: 10.1021/jf3047375

NOVAK, J. M., W. J. BUSSCHER, D. W. WATTS, D. A. LAIRD, M. A. AHMEDNA, AND M. A. S. NIANDOU. (2010). Short-term CO2 Mineralization after Additions of Biochar and Switchgrass to a Typic Kandiudult. Geoderma, 154, 281–288. DOI: 10.1016/j.geoderma.2009.10.009

OANH N. T., B. T. LY, AND D. TIPAYAROM. (2011). Characterization of Particulate Matter Emission from Open Burning of Rice Straw. Atmospheric Environment, 45(2), 493-502. DOI: 10.1016/j.atmosenv.2010.09.023

ORGE, R. F. (2010). Design and Development of the PhilRice Continuous-Type Rice Hull Carbonizer. Unpublished Ph.D. dissertation. University of the Philippines, Diliman, Quezon City.

PHILIPPINE BIOCHAR ASSOCIATION (PBiA). (2011). The Biochar Project.

PHILRICE. (2005). Carbonized Rice Hull. Rice Technology Bulletin. Revised Edition. No. 47.

ROBERTSON, S. J., M. P. RUTHERFORD, J. C. LÓPEZ-GUTIÉRREZ, AND H. B. MASSICOTTE. (2012). Biochar Enhances Seedling Growth and Alters Root Symbioses and Properties of Sub-Boreal Forest Soils. Can. J. Soil Sci., 92, 329–340.

ROSMIZA MOHD ZAINOL. (2012). Stagnation in the Malaysian Rice By-product Industry: The Case of Rice Straw in the MADA Region (PhD Dissertation). Universiti Kebangsaan Malaysia.

Sharma et al., R. Sharma, R. Kumar, D.K. Sharma, L.H Son, I. Priyadarshini, B.T. Pham, D.T. Bui, S. Rai (2019). Inferring air pollution from air quality index by different geographical areas: case study in India Air. Qual. Atmos. Hlth., 12 (11) (2019), pp. 1347-1357. https://doi.org/10.1007/s11869-019-00749-x

TIPAYAROM, D., AND N. T. K. OANH. (2007). Effects from Open Rice Straw Burning Emission on Air Quality in the Bangkok Metropolitan Region. Sci. Asia, 33, 339–345.

TEODORO C. MENDOZA AND ROGER SAMSON. (Strategies to Avoid Crop Residue Burning in the Philippine Context. REAP Canada. Research Report).

TSAI, W. T., M. K. LEE, AND Y. M. CHANG. (2007). Fast Pyrolysis of Rice Hull: Product Yields and Compositions. Bioresource Technology, 98, 22–28.

TU, W. K., J. L. SHIE, C. Y. CHANG, C. F. CHANG, C. F. LIN, S. Y. YANG, J. T. KUO, D. G. SHAW, Y. D. YOU, D. J. LEE. (2009). Products and Bioenergy from the Pyrolysis of Rice Straw via Radio Frequency Plasma and Its Kinetics. Bioresource Technology, 100, 2052–2061. Elsevier Ltd.

UTUSAN MALAYSIA. (2004). Plastik Bawa Bencana kepada Alam Sekitar. [Cited 11 June 2012]. Available from: www.utusan.com.my

VAN SOEST, P. J. (2006). Rice Straw, the Role of Silica and Treatments to Improve Quality. Anim. Feed Sci. Technol., 130(3-4), 137-171.

YU, J. T., A. M. DEHKHODA, AND N. ELLIS. (2011). Development of Biochar-Based Catalyst for Transesterification of Canola. Energy Fuels, 25, 337–344. DOI: 10.1021/ef100861v