Abstract
Application of nanotechnology truly brought advancement on different fields, including electronics, energy, environment, health sectors, agriculture and allied fields. Breakthrough on the application of nanotechnology in agriculture has revolutionized the plant production, plant protection, processing, and packaging transportation of agricultural products. Today, nanotechnology is widely utilized in the field of fisheries, including fish nutrition, fish health and detection, and water management. It has showed significant effect in improving the specificity and sensitivity on detecting opportunistic pathogens that attacked aquaculture species; development of efficient and effective nanovaccines and supplements; enhance the quality, absorption properties, bioavailability, and blending properties of the feed which significantly affect the growth rate of aquaculture species; and also showed excellent result in the purification of water resources including the elimination of unwanted contaminants. In this regard, this review aims to explore the different research and current trends, including issues and concerns on the application of nanotechnology in aquaculture.
References
Adams, A., & Thompson, K. D. (2006). Biotechnology offers revolution to fish health management. Trends in biotechnology, 24(5) (pp. 201-205.)
Assefa, A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary medicine international, 2018.
Bora, T., & Dutta, J. (2014). Applications of nanotechnology in wastewater treatment—a review. Journal of nanoscience and nanotechnology, 14(1), (pp. 613-626).
Boyd, C. E. (2017). General relationship between water quality and aquaculture performance in ponds. In Fish diseases (pp. 147-166).
Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.
Brudeseth, B. E., Wiulsrød, R., Fredriksen, B. N., Lindmo, K., Løkling, K. E., Bordevik, Bordevik, M., Steine, N., Klevan, A. & Gravningen, K. (2013). Status and future perspectives of vaccines for industrialised fin-fish farming. Fish & shellfish immunology, 35(6), (pp. 1759-1768).
Bureau, D. P., & Hua, K. (2010). Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquaculture Research, 41(5), (pp. 777-792).
Can, E., Kizak, V., Kayim, M., Can, S. S., Kutlu, B., Ates, M., Kocabas, M. & Demirtas, N. (2011). Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. Journal of Materials Science and Engineering, 5(5).
Cao, C., Yang, D., & Zhou, Y. (2015). The applications of manufactured nanomaterials in aquaculture. Journal of Computational and Theoretical Nanoscience, 12(9), (pp. 2624-2629).
Chatterjee, S., & Judeh, Z. M. (2016). Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil. LWT-Food Science and Technology, 65, 206-213.https://doi.org/10.1016/j.lwt.2015.08.010
Cicek, S., & Nadaroglu, H. (2015). The use of nanotechnology in the agriculture. Advances in Nano research, 3(4), (pp. 207).
Craig, S., Helfrich, L. A., Kuhn, D., & Schwarz, M. H. (2017). Understanding fish nutrition, feeds, and feeding. https://vtechworks.lib.vt.edu/bitstream/handle/10919/80712/FST269.pdf?sequence=1
Curtis, J., & Stanley, B. (2016). Water quality and recreational angling demand in Ireland. Journal of outdoor recreation and tourism, 14, (pp. 27-34).
d’Orbcastel, E. R., Blancheton, J. P., & Aubin, J. (2009). Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment. Aquacultural Engineering, 40(3), (pp. 113-119).
Dar, A. H., Rashid, N., Majid, I., Hussain, S., & Dar, M. A. (2020). Nanotechnology interventions in aquaculture and seafood preservation. Critical reviews in food science and nutrition, 60(11), (pp. 1912- 1921).
de Guia, A. C. M., Fernando, S. I. D., Medina, N. P., Eugenio, P. J. G., Pilare, R., Velasco, R. R., Domingo, C. Y. J., Monserate, J. J. & Quiazon, K. M. A. (2020). Gold nanoparticle-based detection of pirAvp toxin gene causing acute hepatopancreatic necrosis disease (AHPND). SN Applied Sciences, 2(8), (pp. 1-8).
Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97, (pp. 954-965).
Eze, E., & Ajmal, T. (2020). Dissolved Oxygen Forecasting in Aquaculture: A Hybrid Model Approach. Applied Sciences, 10(20), 7079.
Eze, E., Halse, S., & Ajmal, T. (2021). Developing a Novel Water Quality Prediction Model for a South African Aquaculture Farm. Water, 13(13), 1782.
FAMA (Fisheries Administration of the Ministry of agriculture and rural affairs of the people’s Republic of China). (2017). China Fisheries Statistics Yearbook. China Agricultural Press, Beijing
Francis-Floyd, R., & Wellborn, T. L. (1991). Introduction to fish health management. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
Frans, I., Lievens, B., Heusdens, C., & Willems, K. A. (2008). Detection and identification of fish pathogens: what is the future?.
Giacomazzo, M., Bertolo, A., Brodeur, P., Massicotte, P., Goyette, J. O., & Magnan, P. (2020). Linking fisheries to land use: How anthropogenic inputs from the watershed shape fish habitat quality. Science of the Total Environment, 717, 135377.
Gregory, A. E., Williamson, D., & Titball, R. (2013). Vaccine delivery using nanoparticles. Frontiers in cellular and infection microbiology, 3, 13.
Handy, R. D. (2012). FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fisheries Society of the British Isles, 1-29.
Handy, R. D., Cornelis, G., Fernandes, T., Tsyusko, O., Decho, A., Sabo‐Attwood, T., Metcalfe, C., Steevens, J., Klaine, S., Koelmas, A. & Horne, N. (2012). Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry, 31(1), 15-31. https://doi.org/10.1002/etc.706
Hash, S., Martinez-Viedma, M. P., Fung, F., Han, J. E., Yang, P., Wong, C., Loganathan, D., Menon, S. & Lightner, D. (2019). Nuclear magnetic resonance biosensor for rapid detection of Vibrio parahaemolyticus. biomedical journal, 42(3), (pp. 187-192).
Hill, B. J. (2005). The need for effective disease control in international aquaculture. Developments in biologicals, 121, 3-12.
Hølvold, L. B., Fredriksen, B. N., Bøgwald, J., & Dalmo, R. A. (2013). Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano-and microparticles. Fish & shellfish immunology, 35(3), (pp. 890-899).
Hu, Z., Zhang, Y., Zhao, Y., Xie, M., Zhong, J., Tu, Z., & Liu, J. (2019). A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors, 19(6), 1420.
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of hazardous materials, 211, 317- 331. https://doi.org/10.1016/j.jhazmat.2011.10.016
Huang, S., Wang, L., Liu, L., Hou, Y., & Li, L. (2015). Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agronomy for Sustainable Development, 35(2), 369-400. DOI 10.1007/s13593-014-0274-x
Ji, J., Torrealba, D., Ruyra, À., & Roher, N. (2015). Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology, 4(4), 664-696.https://doi.org/10.3390/biology4040664
Jobling, M. (2016). Fish nutrition research: past, present and future. Aquaculture international, 24(3), (pp. 767- 786).
Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326-17346. https://doi.org/10.1007/s11356-017-9360-3
Konkol, D., and Wojnarowski, K. (2018). The Use of Nanominerals in Animal Nutrition as a Way to Improve the Composition and Quality of Animal Products. Journal of Chemistry, 2018, 1–7. doi:10.1155/2018/5927058
Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M. M., & Dilbaghi, N. (2014). Nanotechnology-based water treatment strategies. Journal of nanoscience and nanotechnology, 14(2), 1838-1858.
Masagounder, K., Ramos, S., Reimann, I., & Channarayapatna, G. (2016). Optimizing nutritional quality of aquafeeds. In Aquafeed Formulation (pp. 239-264). Academic Press. https://doi.org/10.1016/B978-0-12-800873-7.00006-3
Mugimba, K. K., Byarugaba, D. K., Mutoloki, S., Evensen, Ø., & Munang’andu, H. M. (2021). Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens, 10(6), 673.
Munawar, N. (2021). Interaction and Applications of Nanoparticles in Fishes and Aquaculture. Sch Bull, 7(6), 150-155.
Nagaraju, V. T. (2019). Nanovaccines in aquaculture. Arch Nano Op Acc J, 2(1).
Nayan, A. A., Mozumder, A. N., Saha, J., Mahmud, K. R., & Azad, A. K. A. (2021). Early Detection of Fish Diseases by Analyzing Water Quality Using Machine Learning Algorithm. arXiv preprint arXiv:2102.09390.
Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., Folke, C., Lubchenco, J., Mooney, H. & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024
Nematollahi A., Decostere A., Pasmans F. & F. Haesebrouck, 2003. Review: Flavobacterium psychrophilum infections in salmonid fish. J. Fish Dis., 26:563-574
NRC (National Research Council). (2011). Nutrient requirements of fish and shrimp. National academies press.
Ogunkalu, O. A. (2019). Utilization of Nanotechnology in Aquaculture and Seafood sectors. Eurasian Journal of Food Science and Technology, 3(1), (pp. 26-33).
Opiyo, M., Mziri, V., Musa, S., Kyule, D., Hinzano, S., Wainaina, M., Magondu, E., Werimo, K. and Ombwa, V. (2020). State of Aquaculture in Kenya: Fish Disease Management and Biosecurity Systems (pp. 97-126).
Piedecausa, M. A., Aguado‐ Giménez, F., Cerezo Valverde, J., Hernandez Llorente, M. D., & García‐ García, B. (2012). Influence of fish food and faecal pellets on short‐ term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non‐ impacted sediments. Aquaculture Research, 43(1), (pp. 66-74).
Piper, R. G. (1982). Fish hatchery management (No. 2175). US Department of the Interior, Fish and Wildlife Service.
Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A., & Rai, V. (2020). Application of nanotechnology in agriculture. In Environmental Nanotechnology Volume 4 (pp. 317-348). Springer, Cham.
Qu, X., Brame, J., Li, Q., & Alvarez, P. J. (2013). Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Accounts of chemical research, 46(3), 834-843.
Rahman, M. T., Nielsen, R., Khan, M. A., & Ahsan, D. (2021). Perceived risk and risk management strategies in pond aquaculture. Marine Resource Economics, 36(1), 43-69.
Rajendran, D. (2013). Application of nano minerals in animal production system. Research Journal of Biotechnology, 8(3), 1-3. Retrhttps://www.researchgate.net/profile/Partha_Swain3/post/Isthere-anyone-who-knows-anything-about-the-application-of-nanotechnology-in-dairy-animalfeeding/attachment/59d6219779197b807797ff60/AS%3A297099179642896%401447845373055 /download/editorial+Res.+Journal+of+Biotech.PDF
Ramsden, J. (2015). Nanotechnology: an introduction. William Andrew.
Rather, M. A., Sharma, R., Aklakur, M., Ahmad, S., Kumar, N., Khan, M., and Ramya, V.L. (2011). Nanotechnology: A Novel Tool for Aquaculture and Fisheries Development. A Prospective MiniReview. Fisheries and Aquaculture Journal, 2, 1–6. https://doi.org/10.4172/2150-3508.1000016
Sabo‐Attwood, T., Apul, O. G., Bisesi Jr, J. H., Kane, A. S., & Saleh, N. B. (2021). Nano‐scale applications in aquaculture: Opportunities for improved production and disease control. Journal of Fish Diseases, 44(4), 359-370.
Schneider, O., Amirkolaie, A. K., Vera-Cartas, J., Eding, E. H., Schrama, J. W., & Verreth, J. A. J. (2004). Digestibility, faeces recovery, and related C, N, and P balances of five feed ingredients evaluated as fishmeal alternatives in Oreochromis niloticus L. Dietary carbohydrate and faecal waste in the Nile tilapia (Oreochromis niloticus L.), 35, 13.
Shaalan, M., Saleh, M., El-Mahdy, M., & El-Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 701-710.
Subramanian, K. S., & Tarafdar, J. C. (2011). Prospects of nanotechnology in Indian farming. Indian Journal of Agricultural Sciences, 81(10), 887-93.
Summerfelt, R. C. (2000). Water quality considerations for aquaculture. Department of Animal Ecology, 2- 7.
Tafalla, C., Bøgwald, J., & Dalmo, R. A. (2013). Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish & Shellfish Immunology, 35(6), 1740-1750.
Tavares, L. H. S., & Santeiro, R. M. (2013). Fish farm and water quality management. Acta Scientiarum. Biological Sciences, 35(1), 21-27.
Trottet, A., George, C., Drillet, G., & Lauro, F. M. (2021). Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Critical Reviews in Environmental Science and Technology, 1-42.
Van Trappen S., Mergaert J. & Swings, J. (2003). Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol., 53:1241- 1245
Vanderzwalmen, M., McNeill, J., Delieuvin, D., Senes, S., Sanchez-Lacalle, D., Mullen, C.,McLellan, I., Carey, P., Snellgrove, D., Foggo, A., Alexander, M., Henriques, F. & Sloman, K. A. (2021). Monitoring water quality changes and ornamental fish behaviour during commercial transport. Aquaculture, 531, 735860.
Wang, Z. Y., Lee, J. H., & Melching, C. S. (2015). Water quality management. In River dynamics and integrated river management (pp. 555-631). Springer, Berlin, Heidelberg.
Yadava, K. K., & Banchhod, S. (2021). FISH DISEASE AND HEALTH MANAGEMENT.
Zaman, M., Good, M. F., & Toth, I. (2013). Nanovaccines and their mode of action. Methods, 60(3), 226- 231.
Zerrouki, D. (2018). Green microalgae for inorganic nanoparticles preparation. Materials and Biomaterials Science, 1(1), 041-045
Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., & Middelberg, A. P. (2014). Nanoparticle vaccines. Vaccine, 32(3), 327-337.
Zhou, X., Wang, Y., Gu, Q., & Li, W. (2009). Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture, 291(1-2), 78- 81.https://doi.org/10.1016/j.aquaculture.2009.03.007
Zhou, Y., Xiao, J., Ma, X., Wang, Q., & Zhang, Y. (2018). An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae. Applied microbiology and biotechnology, 102(12), 5299-5308.
Zolnik, B. S., González-Fernández, Á., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Minireview: nanoparticles and the immune system. Endocrinology, 151(2), 458-465.