Abstract
This study characterized the phytochemical composition, evaluated the antioxidant capacity, and assessed the teratogenic effects of crude betel nut (Areca catechu L.) extract. The bioactive constituents were extracted using 95% ethanol. Preliminary phytochemical screening identified the presence of alkaloids. Folin-Ciocalteu assay quantified the phenolic content at 617 mg gallic acid equivalent (GAE) per gram of dried extract, reflecting substantial phenolics such as flavonoids, steroids, and tannins known for anthelmintic properties. The extract exhibited strong free radical scavenging against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, with an EC₅₀ value of 1.104 ± 0.312 ppm, comparable to ascorbic acid (1.239 ± 0.086 ppm). Zebrafish embryo assays revealed 1.0 g/kg body weight as the safest exposure concentration after 48 hours, whereas higher doses (1.5 and 2.0 g/kg BW) induced toxicity and teratogenicity, likely attributable to alkaloid constituents. This study uniquely integrates phytochemical, antioxidant, and zebrafish embryo toxicity analyses to identify A. catechu as a potential natural anthelmintic and antioxidant source for small ruminants, while establishing 1.0 g/kg BW as a safe therapeutic dose for further drug development.
References
Amudhan, M. S., Begum, V. H., & Hebbar, K. B. (2012). A review on phytochemical and pharmacological potential of Areca catechu L. seed. International Journal of Pharmaceutical Sciences and Research, 3(11), 4151–4157.
Barbieri, A. M. E., Fornazari, B. C., Canova, E. B., Moreira, E. L., & Katiki, L. M. (2014). Effectiveness of Areca catechu Linn against Haemonchus contortus in vitro egg hatch assay. Boletim de Indústria Animal, 71(Suppl).
Bodoira, R., & Maestri, D. (2020). Phenolic compounds from nuts: Extraction, chemical profiles, and bioactivity. Journal of Agricultural and Food Chemistry, 68(4), 927–942.
Charlier, J., Bartley, D. J., Sotiraki, S., Martinez-Valladares, M., Claerebout, E., von Samson-Himmelstjerna, G., Thamsborg, S. M., Hoste, H., Morgan, E. R., & Rinaldi, L. (2022). Anthelmintic resistance in ruminants: Challenges and solutions. Advances in Parasitology, 115, 171–227.
Chen, X., He, Y., & Deng, Y. (2021). Chemical composition, pharmacological, and toxicological effects of betel nut. Evidence-Based Complementary and Alternative Medicine, 2021, 1808081.
Cruz, A. D., Feliciano, M. A. M., Paragas, D. S., Detablan, J. A., & Tsai, P. W. (2022). Isolation, characterization, and antioxidant activity of Selliguea taeniata secondary metabolites. Biointerface Research in Applied Chemistry, 13, 330.
Dulay, R. M. R., Kalaw, S. P., Reyes, R. G., Alfonso, N. F., & Eguchi, F. (2012). Teratogenic and toxic effects of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Higher Basidiomycetes), on zebrafish embryo as model. International Journal of Medicinal Mushrooms, 14(5), 507–512.
Dulay, R. M., Pamiloza, D. G., & Ramirez, R. L. (2018). Toxic and teratogenic effects of mycelia and fruiting body extracts of Lentinus strigosus (BIL 1324) in zebrafish (Danio rerio) embryo. International Journal of Biosciences, 13(5), 205–211.
Febriani, Y., Hidayat, S., & Seftiana, S. (2014). Anti-worm activity of the areca ethanol extract (Areca catechu L.) against Ascaridia galli [In Indonesian]. Indonesian Journal of Pharmaceutical Science and Technology, 3(1), 1–7.
Ferreira-Santos, P., Ibarz, R., Fernandes, J. M., Pinheiro, A. C., Botelho, C., Rocha, C. M., ... & Martín-Belloso, O. (2021). Encapsulated pine bark polyphenolic extract during gastrointestinal digestion: Bioaccessibility, bioactivity and oxidative stress prevention. Foods, 10(2), 328.
Guo, Z., Wang, Z., Luo, Y., Ma, L., Hu, X., Chen, F., ... & Jia, M. (2024). Extraction and identification of bioactive compounds from areca nut (Areca catechu L.) and potential for future applications. Food Frontiers.
Gupta, M. K., Rao, M. L. V., Dixit, P., Shukla, P. C., Baghel, R. P. S., & Dixit, A. K. (2017). Anthelmintic activity of a herbal formulation against gastrointestinal nematodes of goats. Journal of Veterinary Parasitology, 31(2), 58–63.
Hou, B., Yong, R., Wuen, J., Zhang, Y., Buyin, B., Subu, D., Zha, H., Li, H. & Hasi, S. (2022). Positivity rate investigation and anthelmintic resistance analysis of gastrointestinal nematodes in sheep and cattle in Ordos, China. Animals, 12(7), 891.
Ikbal, A. M. A., Rajkhowa, A., Singh, P. C., Choudhury, P. D., & Sahu, R. K. (2020). Assessment of phytochemical and anthelmintic activity of some selected ethnomedicinal plants from Barak Valley Region of Assam. Biomedical and Pharmacology Journal, 13(4), 1961–1969.
Jeandet, P. (2015). Phytoalexins: Current progress and future prospects. Molecules, 20(2), 2770–2774.
Kurek, J. (2019). Introductory chapter: Alkaloids – Their importance in nature and for human life. In J. Kurek (Ed.), Alkaloids – Their importance in nature and human life. IntechOpen.
Lai, H. Y., & Lim, Y. Y. (2011). Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. International Journal of Environmental Science and Development, 2(6), 442–447.
Mahdi-Pour B., Sasidharan S., Sasidharan M., et al. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac J Trop Biomed. 2012;2(12):960-965.
Mandal, S. M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant–microbe symbioses. Plant Signaling & Behavior, 5(4), 359–368.
Meyer Jones, L., Booth, N. H., & McDonald, L. E. (1977). Veterinary pharmacology and therapeutics (4th ed.). Iowa State University Press.
Murwani, R., Kusumanti, E., & Naumova, E. N. (2022). Areca catechu L. and Anredera cordifolia (Ten) Steenis supplementation reduces faecal parasites and improves caecal histopathology in laying hens. International Journal of Veterinary Science and Medicine, 10(1), 52–63.
Nagel, R. (2002). DarT: The embryo test with the zebrafish Danio rerio—A general model in ecotoxicology and toxicology. ALTEX, 19(1), 38–48.
Noreen, H., Semmar, N., Farman, M., & McCullagh, J. (2017). Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pacific Journal of Tropical Medicine, 10(8), 792–801.
Orden, E. A., Del Rosario, N. A., Orden, M. E. M., Dela Cruz, J., Veluz, E. S., Crisostomo, J. C. A., & Del Rosario, L. L. M. (2023). Farm characteristics, management practices and production performance of smallholder goat farms in Central Luzon. Tropical Animal Health and Production, 19(4), 1733–1752.
Pavithra, K., & Vadivukkarasi, S. (2015). Evaluation of free radical scavenging activity of various leaf extracts from Kedrostis foetidissima (Jacq.) Cogn. Food Science and Human Wellness, 4(2), 81–86.
Peng, W. H., Lee, Y. C., Chau, Y. P., Lu, K. S., & Kung, H. N. (2015). Short-term exposure of zebrafish embryos to arecoline leads to retarded growth, motor impairment, and somite muscle fiber changes. Zebrafish, 12(1), 58-70.
Sari, N., Kuspradini, H., Amirta, R., & Kusuma, I. (2017, November 9). Antioxidant activity of an invasive plant, Melastoma malabathricum, and its potential as herbal tea product. In Proceedings of the IOP Conference Series: Earth and Environmental Science (Vol. 60, p. 012014). IOP Publishing.
Siregar, P., Audira, G., Feng, L.-Y., Lee, J.-H., Santoso, F., Yu, W.-H., Lai, Y.-H., Li, J.-H., Lin, Y.-T., Chen, J.-R., & Hsiao, C.-D. (2021). Pharmaceutical assessment suggests locomotion hyperactivity in zebrafish triggered by arecoline might be associated with multiple muscarinic acetylcholine receptors activation. Toxins, 13(4), 259.
Sungpradit, S., Leesombun, A., Chanakarn, C., Nakthong, C., & Boonmasawai, S. (2025). Anthelmintic effects of Areca catechu L. (Arecaceae) and Piper betle L. (Piperaceae) combination on adult Haemonchus spp.: A scanning electron microscopy study. BMC Veterinary Research, 21(1), 491.
Sillanpää, M., Tähtinen, P., & Karonen, M. (2025). Molecular Aspects of Tannin-Anthelmintic Interactions as Revealed by NMR Spectroscopy. ACS omega, 10(29), 32174-32188.
Susanti, A. E., & Prabowo, A. (2014, September 16). Potency of Areca catechu as anthelmintic agent for animals [Conference presentation]. Prosiding Seminar Nasional Pertanian Ramah Lingkungan Mendukung Bioindustri di Lahan Suboptimal, Palembang, Indonesia.
Suzuki, T., Ito, C., Kitano, K., & Yamaguchi, T. (2024). CIELAB color space as a field for tracking color-changing chemical reactions of polymeric pH indicators. ACS Omega, 9(34), 36682–36689.
Tariq, K. A. (2015). A review of the epidemiology and control of gastrointestinal nematode infections of small ruminants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(3), 693–703.
Tangalin, M. G. G. (2011). Anthelmintic effects of processed mature betel nut as dewormer to native chicken and small ruminants (sheep and goats). Asian Journal of Health Basic Research Section, 1, 230–243.
Yan, W., Zhang, T., Li, S., Wang, Y., Zhu, L., Cao, Y., Lai, X., & Huang, H. (2023). Oxidative stress and endoplasmic reticulum stress contributes to arecoline and its secondary metabolites-induced dyskinesia in zebrafish embryos. International Journal of Molecular Sciences, 24(7), 6327.
Yang, B., Chen, H., Chen, W., Chen, W., Zhong, Q., Zhang, M., & Pei, J. (2023). Edible quality analysis of different areca nuts: Compositions, texture characteristics and flavor release behaviors. Foods, 12(9), 1749.
Uniyal, S., Chaurasiya, A. K., Chaudhary, P., & Chahal, U. S. (2024). Exploring Condensed Tannin to Control Gastro-Intestinal Parasitism in Small Ruminants. In Feed Additives and Supplements for Ruminants (pp. 235-248). Singapore: Springer Nature Singapore.
Zajac, A. M., & Garza, J. (2020). Biology, epidemiology, and control of gastrointestinal nematodes of small ruminants. Veterinary Clinics of North America: Food Animal Practice, 36(1), 73–87.
Zhang, W. M., Huang, W. Y., Chen, W. X., Han, L., & Zhang, H. D. (2014). Optimization of extraction conditions of areca seed polyphenols and evaluation of their antioxidant activities. Molecules, 19(10), 16416–16427.
Zhang, P., Sari, E. F., McCullough, M. J., & Cirillo, N. (2022). Metabolomic profile of Indonesian betel quids. Biomolecules, 12(10), 1469.
